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/Overview \

Motivation
Constraint-based learning
Bayesian learning
Example

Software demo
Concluding remarks

(Essentially, a handful of slides interleaved with software demos.)
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Bayesian networks

A Bayesian network (also referred to as belief network,
probabilistic network, or causal network) is an acyclic
directed graph (DAG) consisting of:

History of viral
hepatitis

History of alcohol
abuse

The qualitative part, encoding a
domain's variables (nodes) and
the probabilistic (usually causal)
influences among them (arcs).

The quantitative part, encoding the
joint probability distribution over
these variables.
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Constraint-based learning
Bayesian learning
Example

{ @ Motivation
@ayesian networks: Numerical parameters l Concluaing remarks

Prior probability distribution tables for
nodes without predecessors

SEEEL Bt (History of viral hepatitis, History of
absent 0.83v. _alcohol abuse, Obesity)

L4

Conditional probability
distributions tables for
: nodes with predecessors
y (Fatigue, Jaundice, ...)

. Chronic hepatitis | present absent

present 06 0.2
\ absent 0.4 ty
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Bayesian learning
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{ @ Motivation
l Constraint-based learning

KNhat do the numbers come from?

Textbooks
Literature

History of wiral
hepatitis

Expert opinion

llllllll

Databases

lllllllll

)
--------

. Chronic hepatitis | present absent

present 06 0.2
\ absent 04 08/
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ﬂeasoning in Bayesian networks

Bayesian learning
Example

{ @ Motivation
Constraint-based learning
Software demo

Concluding remarks
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The most important type of reasoning in Bayesian networks is
updating the probability of a hypothesis (e.g., a diagnosis)
given new evidence (e.g., medical findings, test results).

History of alcohol History of viral
abuse =] hepatitis

1N M §
e

=

=

Example:

What is the probability of
Chronic Hepatitis in an
alcoholic patient with
Jjaundice and ascites?

Which disease is most
likely?

Which tests should we
perform next?

P(Hepatitis | alcoholism=present, jaundice=present, ascites=present)?/
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Constraint-based learning
Bayesian learning
Example

Example: Hepar II Software demo

Concluding remarks

=

\ ) Fp—— / O Reactive hepatitis
~.|O Hepatic steatosis O  Hepatic fibrosis present 2%||
O Carcinoma present 4%|
el wesent %] ol cosent e[ |opevsent S
absent 90% NI | avsent 6% M| s /
absent 94% [T |
) Functional hyperbilir...
[©  chronic hepatitis &) Cirrhosis 5 ohe ]
active  12%]] decompensate 5%]| present 7%l
persistent 5%| compensate 2% present 38% ] | —|absent 92% [ |
absent  82% | absent 2% | absent 62%| |

E—

70 variables; 2,139 numerical parameters (instead of over 270~ 1021!)

S
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Learning Bayesian networks from data

Motivation
Constraint-based learning
Bayesian learning
Example

Software demo
Concluding remarks

There exist algorithms with a capability to analyze data, discover
causal patterns in them, and build models based on these data.

15 29474 65063 36.887 12 60800
10527 €425 36 22309 71063 3097 12.8 63900
7904 3775 2625853 60.75 41985 203 57800
6601 57 2311296 67.188 40289 17 51200
7251 62 1722635 5625 4678 181 428000
6967 6675 40 9718 6562553103 12 57700
8489 70.333 20 15444 59.875 50.46 135 44000
9554 8525 79 44225 74688 40137 17.1 70100
15287 6525 42 26913 707528276 144 71738
7057 5525 17 24379 59.063 44251 212 58200
16848 7775 48 26569 75938 27.187 9.2 63000
18211 91 87 76.681 80625 51.164 12.8 74400
21561 6925 5844702 7625 26689 9.2 75400
20667 65 68 22995 75625 28038 11 66200
10624 6175 26 8774 66 2339 95 52900
11738 7425 32 25449 66875 27701 12 63400
10107 74 4311315 7129096 162 66200
7817 6575 36 33709 64.25 52548 17.7 54600
7050 26 11 05531355651 18.8 59500
9082 835 73 64668 77375 42185 136 66700
11706 60 56 16937 73.75 39.479 12.7 62100
7643 4925 23 36635 62813 39302 187 57700
25734 90 77.67.758 80.938 44133 10 80200
20155 86 84 £9.31 79688 48766 17.6 74000
29852 945 84 75009 81313 51.363 10.6 74100

‘ 7980: 685 34  9.122:63.875:35.294.16.3:53100: ¥
1] <|Row 1 of 170 [» | m] «! Ay

structure

numerical

Success 0.2

Failure 0.8
Success Success |
Good 04 01
‘Moderate 0.4 0.3
Poor 0.2 0.6

Decision Systerns Laboratory
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Causality and probability

The only reference to causality in a typical statistics textbook is:
“correlation does not mean causation”

(if the textbook contains the word “causality” at all ©).

Many confusing substitute terms: “confounding factor,” “latent
variable,” “intervening variable,” etc.

What does correlation mean then (with respect to causality)?

The goal of experimental design is often to establish (or
disprove) causation. We use statistics to interpret the results
of experiments (i.e., to decide whether a manipulation of the
independent variable caused a change in the dependent
variable).

How are causality and probability actually related and what
does one tell us about the other?

Not knowing this constitutes a handicap! /

DS
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/The problem of learning

manipulation)

variables X

\

DS
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Example
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Concluding remarks

Given a set of variables (a.k.a. attributes) X and a
data set D of simultaneous values of variables in X

1.0btain insight into causal connections among
the variables X (for the purpose of
understanding and prediction of the effects of

2.Learn the joint probability distribution over the

Learning Bayesian Networks and Causal Discovery /
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Concluding remarks

/Why are we also interested in causality?

Reason 1: Ease of model-building and model
enhancements: Experts already think in causal terms.

Reason 2: Predicting the effects of manipulation.

Given (2), is (1) really surprising?

\
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{ @ Motivation
l Constraint-based learning

Causality and probability

Causality and probability are closely related and their relation
should be made clear in statistics.

Probabilistic dependence is considered a necessary condition for
establishing causation (is it sufficient?).

weather

O Weather and barometer reading are correlated
because the weather causes the barometer
reading.

A cause can cause an effect but it does not

C"J have to. Causal connections result in

arometer probabilistic dependencies (or correlations in
reading linear case).

\
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Example

Software demo
Concluding remarks

Causal graphs

Acyclic directed graphs (hence, no
time and no dynamic reasoning)
representing a snapshot of the world at
a given time.

glass on thorns on

Nodes are random variables and arcs the road the road

are direct causal dependencies
between them.

Causal connections result in correlation
(in general probabilistic dependence).

flat tire

nails on
the road

« glass on the road will be ?el:arlri‘lfg @
correlated with flat tire O :tiiﬁt‘rg‘s
 glass on the road will be an noise
correlated with noise @) acc'deyt
* bumpy feeling will be a knife \O O
correlated with noise injury g::nage
DS
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Causal Markov condition

An axiomatic condition describing the relationship
between causality and probability.

A variable in a causal graph is probabilistically independent
of its non-descendants given its immediate predecessors.

Axiomatic, but used by almost everybody in practice and
no convincing counter examples to it have been shown
so far (at least outside the quantum world).

\
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Markov condition: Implications

Variables A and B are
probabilistically dependent if there
exists a directed active path from
A to B or from B to A:

Thorns on the road are correlated
with car damage because there is
a directed path from thorns to car
damage.

DS

Bayesian learning
Example
Software demo

{, @ Motivation
Constraint-based learning
Concluding remarks

thorns on
the road

/

O flat tire

an
accident

O

car
damage

T T L Learning Bayesian Networks and Causal Discovery
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{ @ Motivation
l Constraint-based learning

/Markov condition: Implications

Variables A and B are
probabilistically dependent if there
exists a C such that there exists a
directed active path from C to A
and there exists a directed active

path from C to B: flat tire

Car damage is correlated with

noise because there is a directed

path from flat tire to both (flat tire O

is a common cause of both). an Coise
accident

O
\DSL — /
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/Markov condition: Implications

Variables A and B are probabilistically
dependent if there exists a D such
that D is observed (conditioned upon)
and there exists a C such that A is
dependent on C and there exists a
directed active path from C to D and
there exists an E such that B is
dependent on E and there exists a
directed active path from E to D:

Nails on the road are correlated with
glass on the road given flat tire
because there is a directed path from
glass on the road to flat tire and from
nails on the road to flat tire and flat
tire is observed (conditioned upon).

Decision Systerns Laboratory

glass on
the road

Bayesian learning

Example
Software demo
Concluding remarks

{ @ Motivation
l Constraint-based learning

flat tire

nails on
the road
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/ l sﬁ?tTvng demo
mgm . Concluding remarks
Markov condition:

Summary of implications

Variables A and B are probabilistically dependent if:

* there exists a directed active path from A to B or there
exists a directed active path from B to A

* there exists a C such that there exists a directed active
path from C to A and there exists a directed active path
fromCtoB

 there exists a D such that D is observed (conditioned
upon) and there exists a C such that A is dependent on C
and there exists a directed active path from C to D and
there exists an E such that B is dependent on E and there
exists a directed active path fromE to D

\
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Markov condition:
Conditional independence

Once we know all direct causes of an
event E, the causes and effects of
those causes do not tell anything new
about E and its successors.

(also known as “screening off”)

E.g.,

e Glass and thorns on the road are
independent of noise, bumpy
feeling, and steering problems
conditioned on flat tire. a knife

* Noise, bumpy feeling, and steering

\ problems become independent

conditioned on flat tire.

DS

glass

on

the road

bumpy
feeling

an

accid
O

injury

\eYt

O

:

Motivation
Constraint-based learning
Bayesian learning
Example

Software demo
Concluding remarks

thorns on
the road

car
damage

nails on
the road

steering
problems
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Manipulation theorem [Spirtes, Glymour & Scheines 1993]:

Given an external intervention on a variable A in a causal

graph, we can derive the posterior probability distribution
over the entire graph by simply modifying the conditional
probability distribution of A.

.. . i i th
If this intervention is strong Intervention O causes
enough to set A to a specific of A
value, we can view this

intervention as the only cause
of A and reflect this by
removing all edges that are

coming into A. Nothing else in

\ the graph needs to be modified. offects of A /

D S L Learning Bayesian Networks and Causal Discovery
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/Intervention: Example

Suicide eliminates
cancer as a cause of
this brave samurai’s
death.

\

DS

Bayesian learning

Software demo
Concluding remarks

{ @ Motivation
Constraint-based learning
Example

No?! Yes!!
Wooaah!

Learning Bayesian Networks and Causal Discovery
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A cancer tumor!
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Motivation

Intervention: Example

Making the tire flat with a knife makes
glass, thorns, nails, and what-have-
you irrelevant to flat tire. The knife is

the only cause of flat tire.

DS

knife cut

@\

bumpy

feeling ®

O

an
accident
a knife

.

@)

injury
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flat tire

O

steering
problems

O

noise

O

car
damage
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Experimentation

Empirical research is usually concerned with testing causal hypotheses.

Smoking and lung cancer are correlated.

Can we reduce the incidence of lung cancer by reducing smoking?
In other words: Is smoking a cause of lung cancer?

Each of the following causal structures is compatible
with the observed correlation

G = genetic factors G
S = smoking
C = lung cancer S i

G

R zl

D s L Learning Bayesian Networks and Causal Dlscovery
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{ @ Motivation
l Constraint-based learning

Selection bias

Observing correlation is in general not enough to establish

causality.
genetic factors

. :v\-/O;' lung cancer
smoking

* If we do not randomize, we run the danger that there are common
causes between smoking and lung cancer (for example genetic
factors).

 These common causes will make smoking and lung cancer
dependent.

* It may, in fact, also be the case that lung cancer causes smoking.

lung cancer.

D s L Learning Bayesian Networks and Causal Discovery
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Bayesian learning
Example
Software demo
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Expe ri mentation Concluding remarks
genetic factors
coinQ asbestos
. lung cancer
smoking d

* In a randomized experiment, coin becomes the only cause of
smoking.

 Smoking and lung cancer will be dependent only if there is a
causal influence from smoking to lung cancer.

* If Pr(C|S) = Pr(C|~S) then smoking is a cause of lung cancer.

» Asbestos will simply cause variability in lung cancer (add noise
to the observations).

\ But, can we really experiment in this domain?

D s L Learning Bayesian Networks and Causal Discovery
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Science by observation

“... Does smoking cause lung cancer or does
lung cancer cause smoking? ...”

:

Motivation
Constraint-based learning
Bayesian learning
Example

Software demo
Concluding remarks

Sir Ronald A. Fisher, a prominent statistician, father of experimental design

“... George Bush taking credit for the end of the cold
war is like a rooster taking credit for the daybreak ...”

Vice-president Al Gore towards Dan Quayle during their first debate, Fall 1992

Experimentation is not always possible.
We can do quite a lot by just observing.

Assumptions are crucial in both experimentation and

observation, although they are usually stronger in the latter.

New methods in causal discovery: squeezing data to the limits

D s L Learning Bayesian Networks and Causal Discovery
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/Approaches to learning Bayesian networks

Constraint search-based learning
Search the data for independence relations to give us a

clue about the causal relations [Spirtes, Glymour, Scheines
1993].

Bayesian learning

Search over the space of models and score each model
using the posterior probability of the model given the data
[Cooper & Herskovitz 1992; many others].

\
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Example
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Concluding remarks

/Constraint search-based learning

Principles:

« Search for independencies among variables in the database.

« Use the independencies in the data to infer (lack of) causal
links among the variables (given some basic assumptions).

\
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Bayesian learning
Example

Software demo
Concluding remarks

/Constraint search-based learning

“Correlation does not imply causation”

True but only in limited settings and typically abused
by the “statistics mafia” ©.

If x and y are dependent, we have indeed at least
four possible cases:

<O
O h b

D S L Learning Bayesian Networks and Causal Discovery /
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/Constraint search-based learning

Not necessarily true in case of three variables:

x and z are dependent
y and z are dependent
x and y are independent
x and y are dependent given z

We can est_ablish —
causality!

D S L Learning Bayesian Networks and Causal Discovery /
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Bayesian learning
Example

Software demo
Concluding remarks

ﬂoundations of causal discovery:
(1) The Causal Markov Condition

Relates a causal graph to a probability
distribution.

: >\ I’\ /< : Intuition:
In a causal graph, the parents of each node
“shields” the node from its ancestors.

® @ Formally:

For any node X in the graph, we have P[X||
X’,Pa(X)] = P[X;|Pa(X,)],

where Pa(X;) are the parents of X; in the graph,
and ﬁ’ is any set of non-descendents of X in the
grap

Theorem: A causal graph obeys the Markov condition if and only if
every d-separation in the graph corresponds to an independence in

\ the probability distribution. /
D s L Learning Bayesian Networks and Causal Discovery
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Bayesian learning
Example

Software demo
Concluding remarks

ﬁl’he Causal Markov Condition: d-separation

®—’®—’@\ Restatement of “the rules:”_
4 - Each node is a “valve”

@ @ » v-structures are “off”’ by default
\‘ O Q « other nodes are “on” by default
« conditioning on a node flips its

é e state

« conditioning on a v-structure’s
descendants also flips its state.

I(B,F) ? Yes
I(B,F | D) ? No

\ I(B,F|C,D)? Yes
D s L Learning Bayesian Networks and Causal Discovery /
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/Foundations of causal discovery:

{ Motivation
l‘ Constraint-based learning

Bayesian learning
Example

Software demo
Concluding remarks

(2) Faithfulness condition

 Markov Condition:
d-separation = independence in data.

* Faithfulness Condition:
d-separation <= independence in data.

In other words:
All independences in the data are structural,
i.e., are consequences of Markov condition.

D S L Learning Bayesian Networks and Causal Discovery /
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Bayesian learning
Example

Software demo

Violations of faithfulness condition Concluding remarks

Faithfulness assumption is more controversial.
While every scientist makes it in practice, it does

not need to hold.

DS
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Sexual
intercourse
with an
HIV carrier

sharing with
an HIV carrier

Given that HIV virus infection has not taken
place, needle sharing is independent from
intercourse.
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Violations of faithfulness condition l

Motivation
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Software demo
Concluding remarks

(O Stay Up Before an Exam

ves 30% |

No 20%|8 |

¥
O Learn More O Be Tired
ves 65% L) ves 68% [IIN]
No 32%(F | No 32%(l |

Ny -

(©) Exam Performance

Good 50% ([R]
Poor 50% |

The effect of staying up late before the exam on the
exam performance may happen to be zero:

being tired may cancel out the effect of more knowledge.

But is it likely?

DS
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. . . Concluding remarks
Equivalence criterion

Two graphs are statistically indistinguishable (belong to the
same equivalence class) iff they have the same adjacencies
and the same “v-structures”.

l | I J
Statistically Statistically

\ indistinguishable unique /
D s .— Learning Bayesian Networks and Causal Discovery
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/Constraint search-based learning

All possible networks ...

O O
O

OO
O

Oo-0O
O

¥

1

8
EaRCe

AR
¥ WY
¥ I

... can be divided into equivalence classes

\
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Bayesian learning
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Software demo
Concluding remarks

Causal model search

1. Start with data.

2. Find conditional independencies in the data.

3. Infer which causal structures could have given
rise to these independencies.

\
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/Theorems useful in search

Theorem 1

other variables.

Theorem 2

W does not contain Y.

\

DS
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Software demo
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Concluding remarks

There is no edge between X and Y if and only if Xand Y are
independent given any subset (including the null set) of the

If X—Y — Z, X and Z are not adjacent, and X and Z are
independent given some set W, then X—=Y<Z if and only if

Learning Bayesian Networks and Causal Discovery /



[

/PC algorithm

Input:

Output:

\

DS
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Bayesian learning
Example
Software demo

Motivation
@ Constraint-based learning
Concluding remarks

a set of conditional independencies

a “pattern” which represents a Markov equivalence
class of causally sufficient causal models.

Learning Bayesian Networks and Causal Discovery /
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" Concluding remarks
PC algorithm (sketch)

Step 0:
Begin with a complete undirected graph.
Step 1 (Find adjacencies):

For each pair of variables <X,Y> if X and Y are independent
gilven some subset of the other variables, remove the X-Y
edge.

Step 2: (Find v-structures):

For each triple X-Y-Z, with no edge between X and Z, if X and Z
are independent given some set not containing Y, then orient
X-Y-Z as X—=>Y<Z.

Step 3 (Avoid new v-structures and cycles):

— if X—=Y—Z, but there is no edge between X and Z, then orient
Y-Z as Y—Z.

— if X—Z, and there is already a directed path from X to Z, then
orient X — Z as X—Z.

\
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Bayesian learning
Example
/ l sofwiradame
PC algorithm: Example
Causal Independencies entailed by
Graph the Markov condition:

A
\C "D A1B

B// ALD|B,C

(0) Begin with (1) From A L B, remove A—B

N ASNT—
\ B

D C D
— S

D S L Learning Bayesian Networks and Causal Discovery /
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/PC algorithm: Example

(1) From A L D | B,C, remove A—D

(3) Avoid a new v-structure (A—C<D),
Orient C -D as C —D.

DS
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Example

Motivation

@ Constraint-based learning
Bayesian learning
Software demo

Concluding remarks

(2) From A L B, orient
A-C-B as A—>C<B

A\C
o

(3) Avoid a cycle (B —-C —D —B),
Orient B -D as B —D.

D

A\AC —D

Learning Bayesian Networks and Causal Discovery
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Bayesian learning
Example

Software demo
Concluding remarks

/Patterns: Output of the PC algorithm

PC algorithm outputs a ‘pattern’, a kind of graph containing
directed (—) and undirected (—) edges which represents a
Markov equivalence class of Models

— An undirected edge A-B in the ‘pattern’, indicates that
there is an edge between these variables in every graph
in the Markov equivalence class

— A directed edge A—B in the ‘pattern’ indicates that
there is an edge oriented A—B in every graph in the
Markov equivalence class

\
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Example
Software demo
= Concluding remarks
Continuous data

Causal discovery is independent of the actual distribution of
the data.

The only thing that we need is a test of (conditional)
independence.

No problem with discrete data.

In continuous case, we have a test of (conditional)
independence (partial correlation test) when the data comes
from multi-variate Normal distribution.

Need to make the assumption that the data is multi-variate
Normal.

The discovery algorithm turns out to be very robust to this
assumption [Voortman & Druzdzel, 2008].

D s L Learning Bayesian Networks and Causal Discovery /
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- Soft d
Normality Concluding romarks

tstsc

10%-

5%

40 50 60 70 80 90

Multi-variate normality is equivalent to two conditions:
\ (1) Normal marginals and (2) linear relationships

D s .— Learning Bayesian Networks and Causal Discovery
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H H Soft d
Linearity Concluding romarks

tstsc vs. apret

0
~ .,,./.._.
7- .v...,./
A
’
- ’ pd
‘ L 2
30
.,.."/v.._v
: l ‘ I
tstsc

Multi-variate normality is equivalent to two conditions:
\ (1) Normal marginals and (2) linear relationships

T T L Learning Bayesian Networks and Causal Discovery
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Example
Software demo

4 :
Elements of a search procedure e

\

¥

A representation for the current state (a
network structure.)

A scoring function for each state (the
posterior probability).
A set of search operators. 8\0
— AddArc(X,Y)
— DelArc(X,Y)
— RevArc(X,Y)
A search heuristic (e.g., greedy search).

The size of the search space for n
variables is almost 3*C", possible graphs!

OO
O

e

RN
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/Posterior probability score

Dec

[

Bayesian learning
Example

Motivation
Constraint-based learning
([
Software demo

Concluding remarks

P(D|S)P(S)

roy P(D|S)P(S)

P(S|D) =

“Marginal likelihood” P(D|S):
* Given a database
« Assuming Dirichlet priors over parameters

P(D|S) = ]1‘[ i I(ay) e C(a, +N,)
o Dl + V) Gt Tlay)
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Bayesian learning
Example
Software demo

/ Constraint-based learning: Open problems

Motivation
l Constraint-based learning
([

Concluding remarks

Pros:

- Efficient, O(n?) for sparse
graphs.

« Hidden variables can be

* “Older” technology, many
researchers do not seem to

be aware of it.

\

DS

discovered in a modest way.

Cons:

« Discrete independence tests are
computationally intensive

=> heuristic independence tests?
* Missing data is difficult to deal with
=> Bayesian independence test?

Decision Systerns Laboratory
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Bayesian learning
Example

Motivation
Constraint-based learning
([
Software demo

/Bayesian learning: Open problems

Concluding remarks

Pros:

 Missing data and hidden
variables are easy to deal
with (in principle).

* More flexible means of
specifying prior
knowledge.

 Many open research
questions!

\

DS
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Cons:

- Essentially intractable.

« Search heuristics (most efficient)
typically lead to local maxima.

 Monte-Carlo techniques (more
accurate) are very slow for most
interesting problems.
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Bayesian learning
Example

Software demo
Concluding remarks

Example application

« Student retention in US colleges.

« Large problem for US colleges.

« Correctly predicted that the main causal factor
in low student retention is the quality of
incoming students.

[Druzdzel & Glymour, 1994]
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Motivation
Constraint-based learning
Bayesian learning
@ Example
Software demo
S Concluding remarks
ome challenges

Scaling up -- especially Monte Carlo techniques.

Practically dealing with hidden variables --
unsupervised classification.

Applying these techniques to real data and real
problems.

Hybrid techniques: Constraint-based + Bayesian
(e.g., Dash & Druzdzel, 1999).

Learning causal graphs in time-dependent domains
(Dash & Druzdzel, 2002).

Learning causal graphs and causal manipulation
(Dash & Druzdzel, 2002).

Learning dynamic causal graphs from time series
data (Voortman, Dash & Druzdzel 2010)
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Constraint-based learning
Bayesian learning
Example
@ Software demo
O u r S Oftwa re Concluding remarks

A developer’s environment for graphical decision models

(http://Igenie.sis.pitt.edu/). Support for model
building: ImaGeNIe
- - "‘ Diagnosis:
Qualitative | |Learning and discovery ", Diagnosis
interface: module: SMiner e . T
QGeNIe '~.,.. i > : .

by
LN ]
......
LN |
[ ]

~ImaGeNIe W

Model developer module: GeNIe " v svy, = .
: Diagnosis >

Implemented in Visual C++ in
Windows environment.

Wrappers: SMILE.NET® |SMILE®,
Pocket SMILE®

Allow SMILE® to be accessed from
applications other than C++compiler

Reasoning engine: SMILE® (Structural
Modeling, Inference, and Learning Engine).

A platform independent library of C++
classes for graphical models.

_D_SL Learning Bayesian Networks and Causal Discovery

Decision Systerns Laboratory

SMILE.NET®

.
.
.
.
.
.
.
.
.
hd Q
o
*
», o
c Q
.
‘ ket :SMILE®
. .
-
= »
N
. “ 5 ..’
- 0
. *
. " *
o n @
CY I




[ N

Motivation
Constraint-based learning
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Example

@ Software demo
Concluding remarks

The rest
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Bayesian learning
Example
Software demo
» @ Concluding remarks
Concluding remarks

Observation is a valid scientific method

Observation allows often to restrict the class of possible
causal structures that could have generated the data.
Learning Bayesian networks/causal graphs is very exciting:
It is a different and powerful way of doing science.

There is a rich assortment of unsolved problems in causal
discovery / learning Bayesian networks, both practical and
theoretical.

Learning has been an active area of research of my research

group (GeNIe, http://genie.sis.pitt.edu/, is a product of this
work).
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/ Separability

i=1

For C(S,D) = P(D|S)P(S) [assuming P(S)=1]:

PrlE T T N

Ley) Ty +Ny)

q
= C(XiaPaiaDi) = H

i
j=1

[(a;+N;) 4+ T(ay)

~

A Criterion C(S,D) is separable if C(S5,D)= nc(Xl.,Pal.,Dl.)
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