Learning Bayesian Networks and Causal Discovery

Marek J. Druzdzel

University of Pittsburgh School of Information Sciences and Intelligent Systems Program

<u>marek@sis.pitt.edu</u> <u>http://www.pitt.edu/~druzdzel</u>

Learning Bayesian Networks and Causal Discovery -

Overview

- Motivation
- Constraint-based learning
- Bayesian learning
- Example
- Software demo
- Concluding remarks

(Essentially, a handful of slides interleaved with software demos.)

Bayesian networks

A Bayesian network (also referred to as belief network, probabilistic network, or causal network) is an acyclic directed graph (DAG) consisting of:

The qualitative part, encoding a domain's variables (nodes) and the probabilistic (usually causal) influences among them (arcs).

The quantitative part, encoding the joint probability distribution over these variables.

Reasoning in Bayesian networks

Motivation Constraint-based learning Bayesian learning Example Software demo Concluding remarks

The most important type of reasoning in Bayesian networks is updating the probability of a hypothesis (e.g., a diagnosis) given new evidence (e.g., medical findings, test results).

Example:

What is the probability of Chronic Hepatitis in an alcoholic patient with *jaundice* and *ascites*?

Which disease is most likely?

Which tests should we perform next?

P(Hepatitis | alcoholism=present, jaundice=present, ascites=present)?

Decision Systems Laboratory

Causality and probability

The only reference to causality in a typical statistics textbook is: "correlation does not mean causation"

(if the textbook contains the word "causality" at all ©).

Many confusing substitute terms: "confounding factor," "latent variable," "intervening variable," etc.

What does correlation mean then (with respect to causality)?

The goal of experimental design is often to establish (or disprove) causation. We use statistics to interpret the results of experiments (i.e., to decide whether a manipulation of the independent variable caused a change in the dependent variable).

How are causality and probability actually related and what does one tell us about the other?

Not knowing this constitutes a handicap!

The problem of learning

Given a set of variables (a.k.a. attributes) X and a data set D of simultaneous values of variables in X

1.Obtain insight into causal connections among the variables X (for the purpose of understanding and prediction of the effects of manipulation)

2.Learn the joint probability distribution over the variables X

Decision Systems Laboratory

Causality and probability

Causality and probability are closely related and their relation should be made clear in statistics.

Probabilistic dependence is considered a necessary condition for establishing causation (is it sufficient?).

weather

Weather and barometer reading are correlated because the weather causes the barometer reading. A cause can cause an effect but it does not have to. Causal connections result in probabilistic dependencies (or correlations in linear case).

Causal graphs

Acyclic directed graphs (hence, no time and no dynamic reasoning) representing a snapshot of the world at a given time. Nodes are random variables and arcs are direct causal dependencies between them.

Causal connections result in *correlation* (in general *probabilistic dependence*).

- glass on the road will be correlated with flat tire
- glass on the road will be correlated with noise
- bumpy feeling will be correlated with noise

Causal Markov condition

An axiomatic condition describing the relationship between causality and probability.

A variable in a causal graph is probabilistically independent of its non-descendants given its immediate predecessors.

Axiomatic, but used by almost everybody in practice and no convincing counter examples to it have been shown so far (at least outside the quantum world).

Markov condition: Implications

Variables A and B are probabilistically dependent if there exists a directed active path from A to B or from B to A: Thorns on the road are correlated with car damage because there is a directed path from thorns to car damage.

Markov condition: Implications

Variables A and B are probabilistically dependent if there exists a C such that there exists a directed active path from C to A and there exists a directed active path from C to B: Car damage is correlated with noise because there is a directed path from flat tire to both (flat tire is a common cause of both).

Markov condition: Implications

Variables A and B are probabilistically dependent if there exists a D such that D is observed (conditioned upon) and there exists a C such that A is dependent on C and there exists a directed active path from C to D and there exists an E such that B is dependent on E and there exists a directed active path from E to D: Nails on the road are correlated with glass on the road given flat tire because there is a directed path from glass on the road to flat tire and from nails on the road to flat tire and flat a knife tire is observed (conditioned upon).

Learning Bayesian Networks and Causal Discovery -

Markov condition: Summary of implications

Variables A and B are probabilistically dependent if:

- there exists a directed active path from A to B or there exists a directed active path from B to A
- there exists a C such that there exists a directed active path from C to A and there exists a directed active path from C to B
- there exists a D such that D is observed (conditioned upon) and there exists a C such that A is dependent on C and there exists a directed active path from C to D and there exists an E such that B is dependent on E and there exists a directed active path from E to D

Markov condition: Conditional independence

Once we know all direct causes of an event E, the causes and effects of those causes do not tell anything new about E and its successors.

(also known as "screening off")

E.g.,

- Glass and thorns on the road are independent of noise, bumpy feeling, and steering problems conditioned on flat tire.
- Noise, bumpy feeling, and steering problems become independent conditioned on flat tire.

Motivation

Example Software demo Concluding remarks

Constraint-based learning Bayesian learning

Intervention

Manipulation theorem [Spirtes, Glymour & Scheines 1993]:

Given an external intervention on a variable A in a causal graph, we can derive the posterior probability distribution over the entire graph by simply modifying the conditional probability distribution of A.

If this intervention is strong enough to set A to a specific value, we can view this intervention as the only cause of A and reflect this by removing all edges that are coming into A. Nothing else in the graph needs to be modified.

Experimentation

Empirical research is usually concerned with testing causal hypotheses.

Smoking and lung cancer are correlated.

Can we reduce the incidence of lung cancer by reducing smoking? In other words: Is smoking a cause of lung cancer?

Each of the following causal structures is compatible with the observed correlation:

Selection bias

Observing correlation is in general not enough to establish causality.

- If we do not randomize, we run the danger that there are common causes between smoking and lung cancer (for example genetic factors).
- These common causes will make smoking and lung cancer dependent.
- It may, in fact, also be the case that lung cancer causes smoking.
- This will also make them dependent without smoking causing lung cancer.

Motivation

Example Software demo Concluding remarks

Constraint-based learning Bayesian learning

- In a randomized experiment, coin becomes the only cause of smoking.
- Smoking and lung cancer will be dependent only if there is a causal influence from smoking to lung cancer.
- If $Pr(C|S) \neq Pr(C|\sim S)$ then smoking is a cause of lung cancer.
- Asbestos will simply cause variability in lung cancer (add noise to the observations).

But, can we really experiment in this domain?

Science by observation

"... Does smoking cause lung cancer or does lung cancer cause smoking? ..."

Sir Ronald A. Fisher, a prominent statistician, father of experimental design

"... George Bush taking credit for the end of the cold war is like a rooster taking credit for the daybreak ..."

Vice-president AI Gore towards Dan Quayle during their first debate, Fall 1992

- Experimentation is not always possible.
- We can do quite a lot by just observing.
- Assumptions are crucial in both experimentation and observation, although they are usually stronger in the latter.
- New methods in causal discovery: squeezing data to the limits

Approaches to learning Bayesian networks

Constraint search-based learning

Search the data for independence relations to give us a clue about the causal relations [Spirtes, Glymour, Scheines 1993].

Bayesian learning

Search over the space of models and score each model using the posterior probability of the model given the data [Cooper & Herskovitz 1992; many others].

Constraint search-based learning

Constraint search-based learning

Principles:

- Search for independencies among variables in the database.
- Use the *independencies* in the data to infer (lack of) *causal links* among the variables (given some basic assumptions).

Foundations of causal discovery: (1) The Causal Markov Condition

Relates a causal graph to a probability distribution.

Intuition:

In a causal graph, the parents of each node "shields" the node from its ancestors.

Formally:

For any node X_i in the graph, we have $P[X_i|$ X',Pa(X_i)] = $P[X_i|Pa(X_i)]$, where Pa(X_i) are the parents of X_i in the graph, and X' is any set of non-descendents of X_i in the graph.

Theorem: A causal graph obeys the Markov condition if and only if every d-separation in the graph corresponds to an independence in the probability distribution.

B

G

D

F

F

The Causal Markov Condition: d-separation

Yes

Motivation Constraint-based learning Bayesian learning Example Software demo Concluding remarks

Restatement of "the rules:"_

- Each node is a "valve"
- v-structures are "off" by default
- other nodes are "on" by default
- conditioning on a node flips its state
- conditioning on a v-structure's descendants also flips its state.

I(B, F | D) ? No I(B, F | C,D)? Yes

I(B,F) ?

Motivation Constraint-based learning Bayesian learning Example Software demo

Concluding remarks

Foundations of causal discovery: (2) Faithfulness condition

- Markov Condition: d-separation ⇒ independence in data.

In other words: All independences in the data are structural, i.e., are consequences of Markov condition.

Decision Systems Laboratory

The effect of staying up late before the exam on the exam performance may happen to be zero: being tired may cancel out the effect of more knowledge. But is it likely?

Equivalence criterion

Two graphs are statistically indistinguishable (belong to the same equivalence class) iff they have the same adjacencies and the same "v-structures".

Motivation Constraint-based learning **Bayesian learning**

Example

Software demo Concluding remarks

Constraint search-based learning

All possible networks ...

... can be divided into equivalence classes

Causal model search

1. Start with data.

2. Find conditional independencies in the data.

3. Infer which causal structures could have given rise to these independencies.

Theorems useful in search

Theorem 1

There is no edge between X and Y if and only if X and Y are independent given *any* subset (including the null set) of the other variables.

Theorem 2

If X—Y — Z, X and Z are not adjacent, and X and Z are independent given some set W, then $X \rightarrow Y \leftarrow Z$ if and only if W does *not* contain Y.

Motivation

 Constraint-based learning Bayesian learning Example Software demo Concluding remarks

PC algorithm

Input:

a set of conditional independencies

Output:

a "pattern" which represents a Markov equivalence class of causally sufficient causal models.

PC algorithm (sketch)

Step 0:

Begin with a complete undirected graph.

Step 1 (Find adjacencies):

For each pair of variables <X,Y> if X and Y are independent given some subset of the other variables, remove the X–Y edge.

Step 2: (Find v-structures):

For each triple X–Y–Z, with no edge between X and Z, if X and Z are independent given some set not containing Y, then orient X–Y–Z as $X \rightarrow Y \leftarrow Z$.

Step 3 (Avoid new v-structures and cycles):

- if $X \rightarrow Y$ —Z, but there is no edge between X and Z, then orient Y–Z as Y→Z.
- if X—Z, and there is already a directed path from X to Z, then orient X Z as X→Z.

Patterns: Output of the PC algorithm

PC algorithm outputs a 'pattern', a kind of graph containing directed (\rightarrow) and undirected (—) edges which represents a Markov equivalence class of Models

- An undirected edge A–B in the 'pattern', indicates that there is an edge between these variables in every graph in the Markov equivalence class
- A directed edge A→B in the 'pattern' indicates that there is an edge oriented A→B in every graph in the Markov equivalence class

Continuous data

- Causal discovery is independent of the actual distribution of the data.
- The only thing that we need is a test of (conditional) independence.
- No problem with discrete data.
- In continuous case, we have a test of (conditional) independence (partial correlation test) when the data comes from multi-variate Normal distribution.
- Need to make the assumption that the data is multi-variate Normal.
- The discovery algorithm turns out to be very robust to this assumption [Voortman & Druzdzel, 2008].

(1) Normal marginals and (2) linear relationships

Bayesian learning

Decision Systems Laboratory

Posterior probability score

$$P(S \mid D) = \frac{P(D \mid S)P(S)}{P(D)} \propto P(D \mid S)P(S)$$

"Marginal likelihood" P(D|S):

- Given a database
- Assuming Dirichlet priors over parameters

$$P(D \mid S) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \cdot \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

Constraint-based learning: Open problems

<u>Pros:</u>

- Efficient, O(n²) for sparse graphs.
- Hidden variables can be discovered in a modest way.
- "Older" technology, many researchers do not seem to be aware of it.

Cons:

Motivation

Example Software demo

Bayesian learning

Concluding remarks

Constraint-based learning

- Discrete independence tests are computationally intensive
 - ⇒ heuristic independence tests?
- Missing data is difficult to deal with
 - ⇒ Bayesian independence test?

Motivation Constraint-based learning Bayesian learning Example Software demo

Concluding remarks

Bayesian learning: Open problems

Pros:

- Missing data and hidden variables are easy to deal with (in principle).
- More flexible means of specifying prior knowledge.
- Many open research questions!

Cons:

- Essentially intractable.
- Search heuristics (most efficient) typically lead to local maxima.
- Monte-Carlo techniques (more accurate) are very slow for most interesting problems.

Motivation Constraint-based learning Bayesian learning

 Example Software demo Concluding remarks

Example application

- Student retention in US colleges.
- Large problem for US colleges.
- Correctly predicted that the main causal factor in low student retention is the quality of incoming students.

[Druzdzel & Glymour, 1994]

Some challenges

Scaling up -- especially Monte Carlo techniques.
Practically dealing with hidden variables -unsupervised classification.
Applying these techniques to real data and real
problems.
Hybrid techniques: Constraint-based + Bayesian
(e.g., Dash & Druzdzel, 1999).
Learning causal graphs in time-dependent domains
(Dash & Druzdzel, 2002).
Learning causal graphs and causal manipulation
(Dash & Druzdzel, 2002).
Learning dynamic causal graphs from time series
data (Voortman, Dash & Druzdzel 2010)

Motivation

Software demo Concluding remarks

Example

Constraint-based learning Bayesian learning

Concluding remarks

- Observation is a valid scientific method
- Observation allows often to restrict the class of possible causal structures that could have generated the data.
- Learning Bayesian networks/causal graphs is very exciting: It is a different and powerful way of doing science.
- There is a rich assortment of unsolved problems in causal discovery / learning Bayesian networks, both practical and theoretical.
- Learning has been an active area of research of my research group (GeNIe, <u>http://genie.sis.pitt.edu/</u>, is a product of this work).

Decision Systems Laboratory

Separability

A Criterion C(S,D) is separable if

$$C(S,D) = \prod_{i=1}^{n} c(X_i, Pa_i, D_i)$$

For C(S,D) = P(D|S)P(S) [assuming P(S)=1]:

$$P(D \mid S) = \prod_{i=1}^{n} \left\{ \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \cdot \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})} \right\}$$

$$\Rightarrow c(X_i, Pa_i, D_i) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \cdot \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

Learning Bayesian Networks and Causal Discovery

Marek J. Drużdżel

Decision Systems Laboratory School of Information Sciences and Intelligent Systems Program University of Pittsburgh

marek@sis.pitt.edu

Faculty of Computer Science Technical University of Bialystok

druzdzel@wi.pb.bialystok.pl

http://aragorn.pb.bialystok.pl/~druzdzel

http://www.pitt.edu/~druzdzel

Learning Bayesian Networks and Causal Discovery -